1/Test Proposal

Test Title	Carbon Fiber Pushrod Insert Testing
Project Car	KS7-X
Subgroup	Composites
Engineer	Keegan Jordan
Responsible Lead	Grayson Legg
Date Submitted	10/18/2023
Date Presented	10/19/2023

1. Test Variables

- List and describe all variables to be measured by this test
 - Tensile Strength of the assembly.
 - Shear strength of the attachment between the carbon fiber rod and the insert.
 - Etching method
 - Pinned method
 - Sanding method
 - Capped method

2. Sensors

- List and describe the type of sensors that will be needed to collect data
 - MTS Machine

3. Data Table

- Create a table of the data that will be collected

Test Sample #0: Steel pushrod

Test Method	Control Variables	Shear Strength of bond Measured (psi) Trial 1	Shear Strength of bond Measured (psi) Trial 2	Shear Strength of bond Measured (psi) Trial 3	Notes
The Steel pushrod currently used on car will be tested	-Steel Rod -Measuring device				Comparative test to Carbon Fiber alternatives.

Test Method	Control Variables	Shear Strength of bond Measured (psi) Trial 1	Shear Strength of bond Measured (psi) Trial 2	Shear Strength of bond Measured (psi) Trial 3	Notes
A sanded aluminum insert bonded to the carbon fiber tube using adhesive and glass beads.	-Carbon Fiber Rod -Adhesive -Glass beads -Measuring device				This test will be used as a base model test.

Test Sample #1: Sanded insert bonded w/ Hysol EA-e60hp and glass beads.

Test Sample #2: Etched insert bonded w/ Hysol EA-e60hp and glass beads

Test Method	Control Variables	Shear Strength of bond Measured (psi) Trial 1	Shear Strength of bond Measured (psi) Trail 2	Shear Strength of bond Measured (psi) Trial 3	Notes
An etched aluminum insert bonded to the carbon fiber tube using adhesive and glass beads.	-Carbon Fiber Rod -Adhesive -Glass beads -Measuring device				

Test	Control	Shear	Shear	Shear	Notes
Method	Variables	Strength of	Strength of	Strength of	
		bond	bond	bond	
		Measured	Measured	Measured	
		(psi)	(psi)	(psi)	
		Trial 1	Trial 2	Trial 3	
A hole is to	-Carbon				
be drilled	Fiber Rod				
through	-Adhesive				
carbon fiber	-Glass beads				
rod into	-Measuring				
insert and	device				
two metal					
pins will be					
placed on					
either side.					
Pins will be					
used to help					
support the					
bond					
between the					
rod and the					
insert.					
Adhesive					
and glass					
beads will					
also be used					
to bond the					
insert and					
rod.					

Test Sample #3: Pinned-locked insert bonded w/ Hysol EA-e60hp and glass beads.

Test Method	Control Variables	Shear Strength of bond Measured (psi) Trial 1	Shear Strength of bond Measured (psi) Trial 2	Shear Strength of bond Measured (psi) Trial 3	Notes
A sanded insert will be bonded to the rod using adhesive and glass beads. Then a Carbon Fiber Cap will then also be cured to the outside of the rod.	-Carbon Fiber Rod -Adhesive -Glass beads -measuring device -Resin				

Test Sample #4: CF cap on a sanded insert bonded w/ EA-e60hp and glass beads.

Test Sample #5: A grooved insert bonded w/ Hysol EA-e60hp and glass beads.

Test Method	Control Variables	Shear Strength of bond Measured (psi) Trial 1	Shear Strength of bond Measured (psi) Trial 2	Shear Strength of bond Measured (psi) Trial 3	Notes
A grooved insert will be bonded to the rod using Hysol Adhesive and glass beads.	-Carbon Fiber Rod -Adhesive -Glass beads -measuring device				

4. Test Goals

- What are the expectations of the results?

	EVENT:	1G ACCEL	1.5G ACCEL	2.8G ACCEL	SS 1G SKIDPAD RH	SS 1.5G SKIDPAD RH	1G SKID+ 1G ACCEL RH	5G BUMP	Max Tension	Max Compression
		-109.62	-122.82	-157.16	-109.95	-91.19	-169.35	0.0164	-91.19	-169.35
	LCAF	-618.71	-693.26	-887.07	-281.83	-184.85	-434.09	37.1512	-184.85	-887.07
	LCAR	525.12	588.39	752.88	372.00	286.20	572.97	-7.1710	752.88	-7.17
RR	UCAF	199.24	223.25	285.66	87.34	56.20	134.52	-253.7522	285.66	-253.75
	UCAR	-550.32	-616.63	-789.02	-435.12	-344.01	-670.19	-1596.2191	-344.01	-1596.22
		464.80	520.80	666.40	236.51	163.00	364.28	1967.5014	666.40	163.00

- 666.40lbs of force in tensile.
- 163lb of stress in compression
 - We expect that the insert will be able to resist pulling out of the rod at 666.40lbs of force in tensile.
- What factors would define a successful test vs an inconclusive test? Why?
 - A successful test will show a maximum force experienced when the bond fails.
 - An inconclusive test would be the result of error in setting up MTS.
- What constitutes a valid result?
 - A valid result would be a method of bonding an aluminum insert to a carbon fiber rod that could withstand up to minimum of 666.40lbs of force in tensile and 163lbs in compression without failure.

5. Feedback

Include any feedback, commentary, or notes from the presentation session here.

Add test variables for independent variables.

Add test of steel pushrod

Calculate the expected max load of the steel pushrod

2/Test Validation

Project Title	Carbon Fiber Pushrod Insert Testing
Project Car	KS7-X
Subgroup	Composites
Engineer	Keegan Jordan
Responsible Lead	Grayson Legg
Date Submitted	10/18/2023
Date Presented	10/19/2023

6. Test Set-Up

Independent Variables:

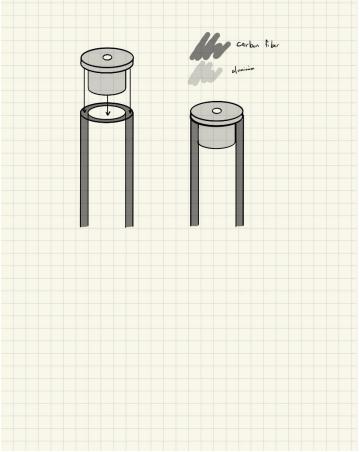
- List the independent variables and how they will be manipulated
 - Insert bonding method: Observe differences in the forces experienced between the different methods of securing the insert to the rod.

Experimental Variables:

- List the experimental variables and how they will be measured
 - Applied load in tension: measured with an MTS machine. The load will be measured as a maximum at fracture.

Control Variables:

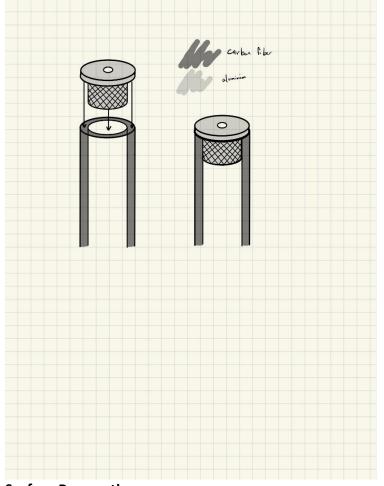
- List the control variables, how they will be measured, and how they will be kept consistent throughout multiple trials
 - The carbon fiber rod: same rod stock will be used for each test.
 - Adhesive: the same amount and type of adhesive will be used for each test (Hysol EA-e60hp)
 - Glass beads: the same amount and type of glass beads will be used for each test.


7. Data Output Sheet

- Create an excel sheet that will be used to collect the data received from the test
- Include: Measured results, control variables, a notes column
- See excel sheet (Carbon Fiber pushrod insert testing data output) <u>https://kennesawedu.sharepoint.com/:x:/r/sites/Team-KS6-</u>

C/Shared%20Documents/Design%20Review/Proposal%20System/Test%20Proposals/Test%20Pr oposal%201/Composites/Carbon%20Fiber%20Pushrod%20Insert%20Testing/Carbon%20Fiber% 20Pushrod%20Insert%20Testing%20Data%20output%20sheet.xlsx?d=we3d8b6ba7de94861bbf 0378eced5093c&csf=1&web=1&e=PN081m&nav=MTVfe0YzNUE4NEJCLTBBRTgtNDkxNS05NkEy LTk2QTZEQTgxMjk5MH0

8. Test Set-Up Sheet


- Create a step-by-step guide explaining how to set up the test so that any reasonably competent member could follow it and complete the test
 - Test Sample #1: Sanded insert bonded w/ Hysol EA-e60hp and glass beads.

Surface Preparation:

- Lightly sand the inside of the carbon fiber tube with a high grit sandpaper to create a scouring that the adhesive can attach to.
- Sand the aluminum insert where it will make contact with the carbon fiber tube to create a scouring that the adhesive can attach to. <u>Manufacturing</u>
- Fabrication of aluminum insert: Aluminum stock cut on a lathe. Then drilled into the top surface for the threaded mounting hole.
- Using a mixture of adhesive and glass beads, coat the areas of contact between the rod and the insert.
- Combine insert and rod. Use a clamp to keep constant pressure while the adhesive hardens.
 - **Testing**
- Secure assembly to MTS

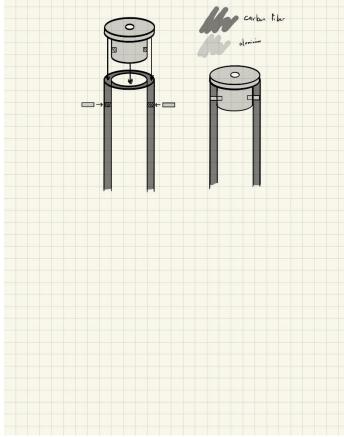
- Thread jig into the pushrod insert.
- Attach jig onto MTS machine.
- Apply tension until failure.
- Measure forces at failure.

• Test Sample #2: Etched insert w/ Hysol EA-e60hp and glass beads

Surface Preparation:

- Lightly sand the inside of the carbon fiber tube with a high grit sand paper to create a scouring that the adhesive can attach to.
- Dip the aluminum insert in an etching solution.

Manufacturing

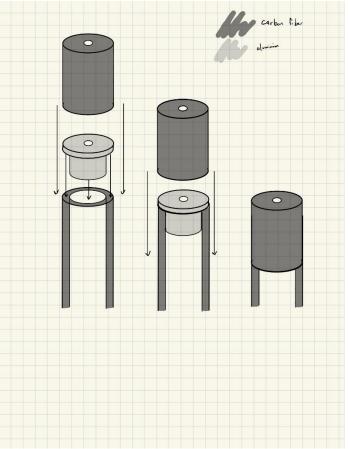

- Using a mixture of adhesive and glass beads, coat the areas of contact between the rod and the insert.
- Combine insert and rod. Use a clamp to keep constant pressure while the adhesive hardens.

Testing

- Secure assembly to MTS
 - Thread jig into the pushrod insert.

- Attach jig onto MTS machine according to MTS procedures.
- Apply tension until failure.
- Measure forces at failure.

Test Sample #3: Pin-locked insert w/ Hysol EA-e60hp and glass beads

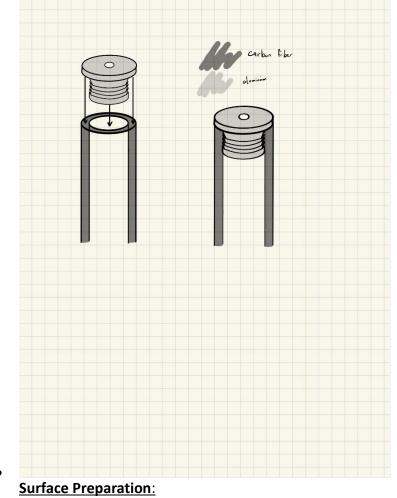


Surface Preparation:

- Lightly sand the inside of the carbon fiber tube with a high grit sand paper to create a scouring that the adhesive can attach to.
- Sand the aluminum insert where it will make contact with the carbon fiber tube to create a scouring that the adhesive can attach to.
 <u>Manufacturing</u>
- Fabrication of aluminum insert: Aluminum stock cut on a lathe. Then drilled into the top surface for the threaded mounting hole.
- Fabrication of aluminum pins. Aluminum stock cut on a lathe. Or bought from supplier.
- Using a mixture of adhesive and glass beads, coat the areas of contact between the rod and the insert.
- Combine insert and rod. Use a clamp to keep constant pressure while the adhesive hardens.
- Use a 1/8th in drill bit to drill a hole on either side of the tube into the aluminum insert.

- Insert pins into drilled holes and secure with adhesive. Testing
- Secure assembly to MTS
 - Thread jig into the pushrod insert.
 - Attach jig onto MTS machine according to MTS procedures.
- Apply tension until failure.
- Measure forces at failure.

Test Sample #4: CF cap on a sanded insert w/ adhesive and glass beads.



Surface Preparation:

- Lightly sand the inside of the carbon fiber tube with a high grit sandpaper to create a scouring that the adhesive can attach to.
- Sand the aluminum insert where it will make contact with the carbon fiber tube to create a scouring that the adhesive can attach to.
- Lightly sand outside of carbon fiber rod where cap and rod will make contact to create scouring that the cap can be layered on top of.
 <u>Manufacturing</u>
- Using a mixture of adhesive and glass beads, coat the areas of contact between the rod and the insert.

- Combine insert and rod. Use a clamp to keep constant pressure while the adhesive hardens.
- Layup carbon fiber material onto rod/insert assembly to form a cap.
- Bag assembly and cure. **Testing**
- Secure assembly to MTS
 - Thread jig into the pushrod insert.
 - Attach jig onto MTS machine according to MTS procedures.
- Apply tension until failure.
- Measure forces at failure.

Test Sample #5: Grooved insert w/ Hysol EA-e60hp and glass beads.

- Lightly sand the inside of the carbon fiber tube with a high grit sand paper to create a scouring that the adhesive can attach to.
- Sand the aluminum insert where it will make contact with the carbon fiber tube to create a scouring that the adhesive can attach to.
 <u>Manufacturing</u>

- Using a mixture of adhesive and glass beads, coat the areas of contact between the rod and the insert.
- Combine insert and rod. Use a clamp to keep constant pressure while the adhesive hardens.

<u>Testing</u>

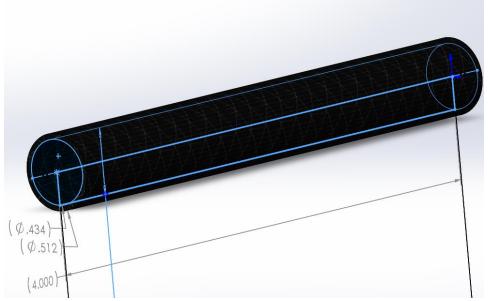
- Secure assembly to MTS
 - Thread jig into the pushrod insert.
 - \circ $\;$ Attach jig onto MTS machine according to MTS procedures.
- Apply tension until failure.
- Measure forces at failure.

9. Feedback

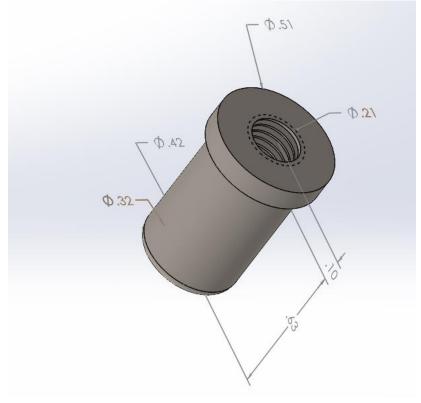
Include any feedback, commentary, or notes from the presentation session here.

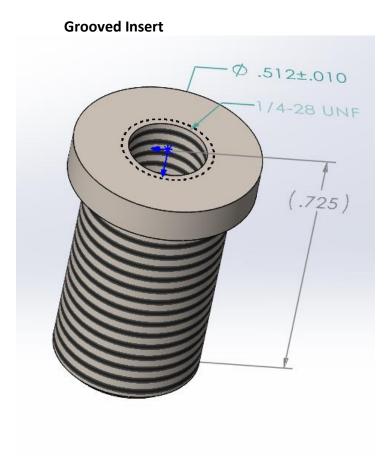
3/Test Design Validation

Project Title	Carbon Fiber Pushrod Insert Testing
Project Car	KS7-X
Subgroup	Composites
Engineer	Keegan Jordan
Responsible Lead	Grayson Legg
Date Submitted	10/25/2023
Date Presented	10/26/2023

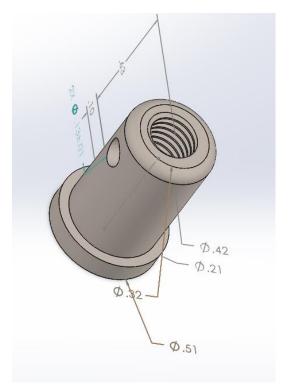

10. CAD and Components

- Insert images of solid models and drawings of all components here. Include a bill of materials if commercial/off-the-shelf (COTS) components are used.
- Include fastener and sensor selection

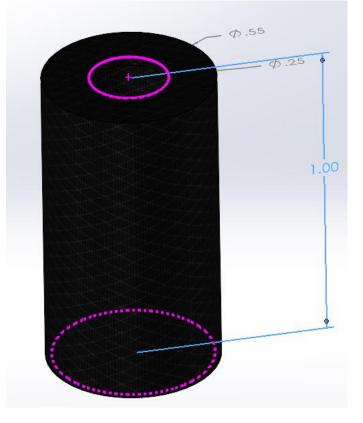

- include justerier und sensor selection								
Item	Supplier	URL	Cost/unit	Units	Total			
Carbon Fiber	Carbon	https://compositeenvisions.com/product/roll-wrapped-	\$23.70	2	\$47.40			
Rod .512"	Envisions	carbon-fiber-tube-twill-weave-gloss-finish-48-long/	per 48"					
diameter 48"			rod					
long								
Hysol EA e-60hp	McMaster	https://www.mcmaster.com/products/loctite-	\$22.55	2	\$45.10			
		hysol/adhesives-2~/container-type~cartridge/	per 50ml					
Aluminum 6061	Online	https://www.onlinemetals.com/en/buy/aluminum/0-5-	\$9.08 per	1	\$9.08			
rod stock	Metals	aluminum-round-bar-6061-t6511-extruded/pid/1084	rod					
.5"diameter 48"								
long								
Stainless Steel	Amazon	Follow link in comments	\$10.97/	1	\$10.97			
316 dowel pins			pack of					
			25					
Rockwest Glass	Rock West	https://www.rockwestcomposites.com/1031-25	\$35.99	1	\$35.99			
beads #1031-25	Composites		for 25g					
			bottle					
Commercial	Carbon	https://compositeenvisions.com/product/commercial-	\$17.00	1	\$17.00			
Grade Carbon	Envisions	grade-carbon-fiber-fabric-2x2-twill-3k-6oz-203gsm-60-	for					
Fiber Fabric 2x2		with-tracers/	36"x60"					
Twill 3k								
6oz/203gsm 60"								
with Tracers								


Resin	Fibreglast	https://www.fibreglast.com/product/System_2000_Epoxy	\$74.99/	1	\$74.99
		<u>_Resin_2000</u>	per quart		
Resin Hardener	FibreGlast	https://www.fibreglast.com/product/System_2000_Epoxy	\$29.95 /	1	\$29.95
		_Resin_2000	½ pint		
Steel Round bar	Online	https://www.onlinemetals.com/en/buy/carbon-steel/1-	\$11.37/	1	\$11.37
stock 1"	Metals	carbon-steel-round-bar-1045-cold-	ft		
diameter		finish/pid/21682?CAWELAID=120293320000204147&gclid			
		=CjwKCAjw-eKpBhAbEiwAqFL0mltbIwn0ktc4ERfd4qj_O-			
		DnYWamS2i9hekTob2Se74QJEZ77laUdRoCj7oQAvD_BwE			
Aluminum	Lab Alley	https://www.laballey.com/products/aluminum-	\$20.00/	1	\$20.00
Etching Solution		<u>metal-</u>	100mL		
60-80%		etchant?currency=USD&variant=39788438356123	bottle		
Phosphoric Acid,		<u>&stkn=7c72afeff1e7&gclid=CjwKCAjwnOipBhBQEi</u>			
0.01-10% Acetic		wACyGLuvjlwoc1g-			
Acid, and 0.01-		48neSTpJzMEXJD723dKOFYP7iXWh-			
5% Nitric Acid		hPfsbuKvSlgfUyxoCPKsQAvD_BwE			

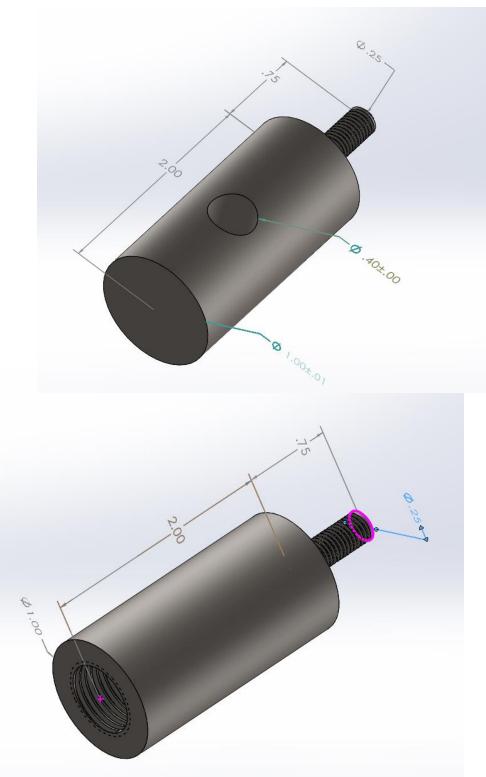
Carbon Fiber Rod Stock



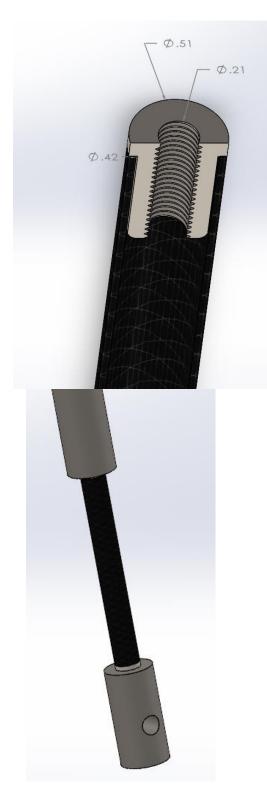
Inserts for sanded, etched, and capped assemblies.

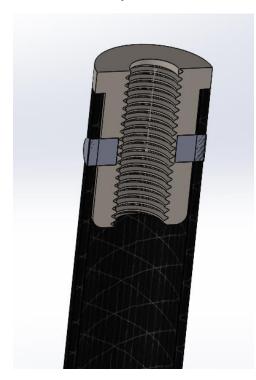


Pinned Insert

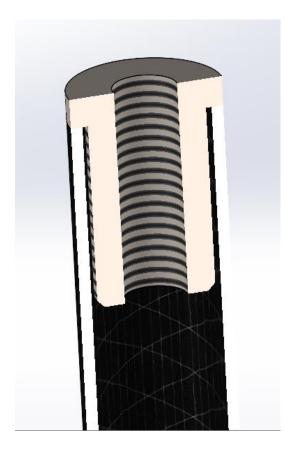


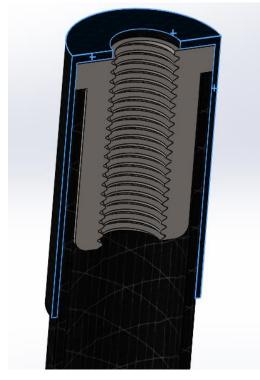
Carbon Fiber Cap (will be layed up onto rod/insert assembly)





Jig Assembly


Sanded/ Etched Assembly


Pinned Assembly

Grooved Assembly

Capped Assembly

11. Detailed Calculations

- Demonstrate that all COTS components are suitable for this application with calculations. Ensure that the parts are appropriate for the conditions being put through.

Shear Strength vs Substrate (Substrates cured for 5 days @ 22°C) Substrate Lapshear Grit-Blasted Steel Aluminum (Abraded/Acid Etched, 3 to 9 mil gap) Aluminum (Anodized) Stainless Steel Polycarbonate Nyton Wood (Fir) Block Shear PVC ABS Epoxy Acrylic Glass	Typical Value N/mm² (ps) 29.8 432 29.9 434 17.9 260 26.8 389 12.6 183 1.9 270 11.3 164 N/mm² (psi 11.8 171 12.8 185 28.8 403 1.0 150 31.7 459	For survey surface: Struggth in tension = 2600 psi F = T: A
Ground Insert		Finex = 2142.54 lbs
SA= 0.911538		
strength in busies : 2600		For etched suface:
F=T.A		strugth in tension = 4340ps;
F=(2000)(0.91,538)		F=T·A
F== 2370165		F = (4340) (0.22632) Fmx = 3586, 49/b
		For pin locked :
		ultimate tasile strength of ss 316 = 58Ks: show stress = 60% of UTS
		shur stress = (5000)(0.60) = 34800 ps:
		redus of per = 6.0625in
		$(cos - 5at and Aren = \pi (0.0625)^{2} = 0.01227 in^{2}$
		$F_{\text{rex}} = T \cdot A$
		Frex = (34900) (U.01227)
		$F_{\text{Max}} = 427.06/b$
		$2pn_{3} = 2(421.0616)$
		$F_{max} = 854.12$ b
		+ adhesive strugth F= 2148.541bs
		Fmx = 3002.71 lbs

There is error in grooved insert calculations due to it not being a flat surface against a flat surface.

12. Readings??

- What parameters are the specific sensors measuring?
- Explain and justify how the data will be measured accurately?
- The MTS machine will be utilized to measure the max force in tensile the bond can withstand before failure for each of the trials per sample.
 - We will be collecting the data from the MTS. If there is an inconclusive test, the results of that test will be recorded and the error will be noted.

13. Computational Evaluation

- If applicable, include FEA/CFD results and include analysis/compared to theoretical results.
- N/A

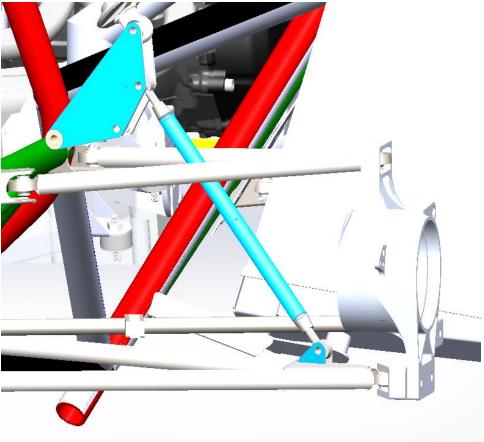
14. Additional Verification

- If applicable, include information such as lap sims or existing data from previous components and analyze.
- N/A

15. Feedback

- Include any feedback, commentary, or notes from the presentation session here.

Drawings for inserts


4/Test Component Finalization

Carbon Fiber Pushrod Insert Testing
KS7 - X
Composites
Keegan Jordan
Grayson Legg
10/25/2023
10/26/2023

16. List of Interactions

List all interactions or conflicts with other components that are essential to conduct test. Include images of assembly CAD.

- Interaction with the bell crank.
- Interaction with the hub.

17. Manufacturing Plan

Consult manufacturing subgroup. Include necessary stock and machining operations. **Jig 1**

- Manufacturing
 - Steel jig will be cut from 1in carbon steel bar stock on a lathe.
 - A 0.25x28in stud will need to be cut on one end of the jig used for threading jig into inserts
 - A m16xXXXmm thread will be cut on the other end of the jig used for threading jig onto MTS machine.

Jig 2

- Manufacturing
 - Steel jig will be cut from 1in carbon steel bar stock on a lathe.
 - A 0.25x28in stud will be cut on one end of the jig used for threading jig into inserts.
 - A 0.4in hole will be drilled through the 1in bar stock used for securing jig to MTS machine.

Test Sample #0 Steel pushrod

- Manufacturing (if no spare pushrod can be found/used)
 - Pushrod will be cut from 1in carbon steel bar stock on a lathe.
 - 0.25x28 thread will be drilled and tapped into either end of bar pushrod.
- Postproduction
 - Screw jigs into both end of assembly

Test Sample #1 Sanded Insert/CF rod assembly

- Manufacturing
 - Aluminum insert will be cut from 0.5in aluminum bar stock on a lathe. Then a 0.25 x 28 thread will be drilled and tapped through the center of each insert.
- Prep
 - All coinciding edges of inserts and carbon fiber rods will be sanded with a high grit sandpaper.
- Assembly
 - Coinciding edges of insert and carbon fiber rods will be joined together with Hysol EA e-60hp adhesive and RockWest #1031-25 glass beads.
 - Clamp will be used to hold constant pressure on assembly while adhesive cures.
- Postproduction
 - Screw jigs into both end of assembly

Test Sample #2 Etched Insert/CF rod assembly

- Manufacturing
 - Aluminum insert will be cut from 0.5in aluminum bar stock on a lathe. Then a 0.25 x 28 thread will be drilled and tapped through the center of each insert.

- Prep
 - Coinciding edges of inserts and carbon fiber rods will be sanded with a high grit sandpaper.
 - Aluminum insert will be dipped in an etching solution.
- Assembly
 - Coinciding edges of insert and carbon fiber rods will be joined together with Hysol EA e-60hp adhesive and RockWest #1031-25 glass beads.
 - Clamp will be used to hold constant pressure on assembly while adhesive cures.
- Postproduction
 - Screw jigs into both end of assembly

Test Sample #3 Pinned Insert/CF rod assembly

- Manufacturing
 - Aluminum insert will be cut from 0.5in aluminum bar stock on a lathe. Then a 0.25 x 28 thread will be drilled and tapped through the center of each insert.
- Prep
 - All coinciding edges of inserts and carbon fiber rods will be sanded with a high grit sandpaper.
 - 1/8th in holes will be drilled into assembly to create holes where pins can be inserted.
- Assembly
 - Coinciding edges of insert and carbon fiber rods will be joined together with Hysol EA e-60hp adhesive and RockWest #1031-25 glass beads.
 - Insert 1/8th in pins into holes. Adhere with Hysol EA e-60hp
 - Clamp will be used to hold constant pressure on assembly while adhesive cures.
- Postproduction
 - Screw jigs into both end of assembly

Test Sample #4 Capped Insert/CF rod assembly

- Manufacturing
 - Aluminum insert will be cut from 0.5in aluminum bar stock on a lathe. Then a 0.25 x 28 thread will be drilled and tapped through the center of each insert.
- Prep
 - All coinciding edges of inserts and carbon fiber rods will be sanded with a high grit sandpaper.
- Assembly
 - Coinciding edges of insert and carbon fiber rods will be joined together with Hysol EA e-60hp adhesive and RockWest #1031-25 glass beads.

- Clamp will be used to hold constant pressure on assembly while adhesive cures.
- Layup
 - The insert/rod assembly will have 2 plys of carbon twill weave layed on top of the insert/rod assembly.
 - Fiber will be applied with 3:1 resin-hardener mixture
- Postproduction
 - Screw jigs into both end of assembly

Test Sample #5 Grooved Insert/CF rod assembly

- Manufacturing
 - Aluminum insert will be cut from 0.5in aluminum bar stock on a lathe. Then a 0.25 x 28 thread will be drilled and tapped through the center of each insert.
 - Grooved face will be cut on lathe.
- Prep
 - All coinciding edges of inserts and carbon fiber rods will be sanded with a high grit sandpaper.
- Assembly
 - Coinciding edges of insert and carbon fiber rods will be joined together with Hysol EA e-60hp adhesive and RockWest #1031-25 glass beads.
 - Clamp will be used to hold constant pressure on assembly while adhesive cures.
- Postproduction
 - Screw jigs into both end of assembly

18. Cost and Order List

Include all stock and COTS components, including vendors. Format according to standard order form with item name, unit cost, quantity, total cost, and any notes.

ltem	Suppli	URL	Cost	Un	Tot
	er		/unit	its	al
Carbo	Carbo	https://compositeenvisions.com/product/roll-wrapped-	\$23.	2	\$47
n	n	carbon-fiber-tube-twill-weave-gloss-finish-48-long/	70		.40
Fiber	Envisi		per		
Rod	ons		48″		
.512"			rod		
diame					
ter					
48″					
long					
Hysol	McMa	https://www.mcmaster.com/products/loctite-hysol/adhesives-	\$22.	2	\$45
EA e-	ster	<u>2~/container-type~cartridge/</u>	55		.10
60hp			per		
			50ml		

Alumi num 6061 rod stock .5"dia meter 48" long	Onlin e Metal s	https://www.onlinemetals.com/en/buy/aluminum/0-5-aluminum- round-bar-6061-t6511-extruded/pid/1084	\$9.0 8 per rod	1	\$9. 08
Stainle ss Steel 316 dowel pins	Amaz on	Follow link in comments	\$10. 97/ pack of 25	1	\$10 .97
Rockw est Glass beads #1031 -25	Rock West Comp osites	https://www.rockwestcomposites.com/1031-25	\$35. 99 for 25g bottl e	1	\$35 .99
Comm ercial Grade Carbo n Fiber Fabric 2x2 Twill 3k 6oz/2 03gsm 60" with Tracer s	Carbo n Envisi ons	https://compositeenvisions.com/product/commercial-grade-carbon- fiber-fabric-2x2-twill-3k-6oz-203gsm-60-with-tracers/	\$17 for 36"x 60"	1	\$17 .00
Resin	Fibre Glast	https://www.fibreglast.com/product/System_2000_Epoxy_Resin_200 0	\$74. 99/ per quar t	1	\$74 .99

Resin	Fibre	https://www.fibreglast.com/product/System_2000_Epoxy_Resin_200	\$29.	1	\$29
Harde	Glast	0	95/		.95
ner			1/2		
			pint		
Steel	Onlin	https://www.onlinemetals.com/en/buy/carbon-steel/1-carbon-steel-	\$11.	1	\$11
Round	e	round-bar-1045-cold-	37/		.37
bar	Metal	finish/pid/21682?CAWELAID=120293320000204147&gclid=CjwKCAjw-	ft		
stock	S	eKpBhAbEiwAqFL0mltbIwn0ktc4ERfd4qj_O-			
1″		DnYWamS2i9hekTob2Se74QJEZ77laUdRoCj7oQAvD_BwE			
diame					
ter					
Alumi	Lab	https://www.laballey.com/products/aluminum-metal-	\$20.	1	\$20
num	Alley	etchant?currency=USD&variant=39788438356123&stkn=7c72a	00/		.00
Etchin		feff1e7&gclid=CjwKCAjwnOipBhBQEiwACyGLuvjlwoc1g-	100		
g		48neSTpJzMEXJD723dKOFYP7iXWh-	mL		
Soluti		hPfsbuKvSlgfUyxoCPKsQAvD_BwE	bottl		
on			е		

19. Rapid Prototyping

If this project costs over \$70 or has over 3 machining ops, include a picture of a 3d printed model and its interactions with other components.

• N/A

20. Feedback

Include any feedback, commentary, or notes from the presentation session here.

Use die to cut threads on jigs, insert drawings

5/Test Analysis

Project Title	Example
Project Car	KSX-E
Subgroup	Subgroup
Engineer	Name
Responsible Lead	Name
Date Submitted	mm/dd/yyyy
Date Presented	mm/dd/yyyy

21. Test Goal Justification

Demonstrate and analyze how the overall system meets its stated goals in 1/Test Proposal.

22. Test Analysis

What information was gained/learned from the test (post pictures/results/data from test)? What could have been done differently? Interpret what the data/results mean? Include a link to the excel sheet of data.

23. Feedback

Include any feedback, commentary, or notes from the presentation session here.